Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 5(5): 755-767, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31139712

RESUMO

Atomistic or ab initio molecular dynamics simulations are widely used to predict thermodynamics and kinetics and relate them to molecular structure. A common approach to go beyond the time- and length-scales accessible with such computationally expensive simulations is the definition of coarse-grained molecular models. Existing coarse-graining approaches define an effective interaction potential to match defined properties of high-resolution models or experimental data. In this paper, we reformulate coarse-graining as a supervised machine learning problem. We use statistical learning theory to decompose the coarse-graining error and cross-validation to select and compare the performance of different models. We introduce CGnets, a deep learning approach, that learns coarse-grained free energy functions and can be trained by a force-matching scheme. CGnets maintain all physically relevant invariances and allow one to incorporate prior physics knowledge to avoid sampling of unphysical structures. We show that CGnets can capture all-atom explicit-solvent free energy surfaces with models using only a few coarse-grained beads and no solvent, while classical coarse-graining methods fail to capture crucial features of the free energy surface. Thus, CGnets are able to capture multibody terms that emerge from the dimensionality reduction.

2.
J Chem Phys ; 148(24): 241703, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29960344

RESUMO

Inspired by the success of deep learning techniques in the physical and chemical sciences, we apply a modification of an autoencoder type deep neural network to the task of dimension reduction of molecular dynamics data. We can show that our time-lagged autoencoder reliably finds low-dimensional embeddings for high-dimensional feature spaces which capture the slow dynamics of the underlying stochastic processes-beyond the capabilities of linear dimension reduction techniques.

3.
Nat Commun ; 9(1): 1073, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523780

RESUMO

In the original version of this Article, the Acknowledgement section omitted financial support from the Deutsche Forschungsgemeinschaft grant SFB 958/A4. This error has now been corrected in both the PDF and HTML versions of the Article.

4.
Nat Commun ; 8(1): 1095, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29062047

RESUMO

Understanding and control of structures and rates involved in protein ligand binding are essential for drug design. Unfortunately, atomistic molecular dynamics (MD) simulations cannot directly sample the excessively long residence and rearrangement times of tightly binding complexes. Here we exploit the recently developed multi-ensemble Markov model framework to compute full protein-peptide kinetics of the oncoprotein fragment 25-109Mdm2 and the nano-molar inhibitor peptide PMI. Using this system, we report, for the first time, direct estimates of kinetics beyond the seconds timescale using simulations of an all-atom MD model, with high accuracy and precision. These results only require explicit simulations on the sub-milliseconds timescale and are tested against existing mutagenesis data and our own experimental measurements of the dissociation and association rates. The full kinetic model reveals an overall downhill but rugged binding funnel with multiple pathways. The overall strong binding arises from a variety of conformations with different hydrophobic contact surfaces that interconvert on the milliseconds timescale.


Assuntos
Peptídeos/química , Proteínas/química , Cinética , Simulação de Dinâmica Molecular
5.
Nat Commun ; 7: 13224, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27827392

RESUMO

The presentation of peptide-MHCII complexes (pMHCIIs) for surveillance by T cells is a well-known immunological concept in vertebrates, yet the conformational dynamics of antigen exchange remain elusive. By combining NMR-detected H/D exchange with Markov modelling analysis of an aggregate of 275 microseconds molecular dynamics simulations, we reveal that a stable pMHCII spontaneously samples intermediate conformations relevant for peptide exchange. More specifically, we observe two major peptide exchange pathways: the kinetic stability of a pMHCII's ground state defines its propensity for intrinsic peptide exchange, while the population of a rare, intermediate conformation correlates with the propensity of the HLA-DM-catalysed pathway. Helix-destabilizing mutants designed based on our model shift the exchange behaviour towards the HLA-DM-catalysed pathway and further allow us to conceptualize how allelic variation can shape an individual's MHC restricted immune response.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Peptídeos/imunologia , Linfócitos T/imunologia , Animais , Antígenos HLA-D/química , Antígenos HLA-D/imunologia , Antígenos HLA-D/metabolismo , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica , Linfócitos T/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(23): E3221-30, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27226302

RESUMO

We introduce the general transition-based reweighting analysis method (TRAM), a statistically optimal approach to integrate both unbiased and biased molecular dynamics simulations, such as umbrella sampling or replica exchange. TRAM estimates a multiensemble Markov model (MEMM) with full thermodynamic and kinetic information at all ensembles. The approach combines the benefits of Markov state models-clustering of high-dimensional spaces and modeling of complex many-state systems-with those of the multistate Bennett acceptance ratio of exploiting biased or high-temperature ensembles to accelerate rare-event sampling. TRAM does not depend on any rate model in addition to the widely used Markov state model approximation, but uses only fundamental relations such as detailed balance and binless reweighting of configurations between ensembles. Previous methods, including the multistate Bennett acceptance ratio, discrete TRAM, and Markov state models are special cases and can be derived from the TRAM equations. TRAM is demonstrated by efficiently computing MEMMs in cases where other estimators break down, including the full thermodynamics and rare-event kinetics from high-dimensional simulation data of an all-atom protein-ligand binding model.

7.
J Chem Theory Comput ; 11(11): 5525-42, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26574340

RESUMO

Markov (state) models (MSMs) and related models of molecular kinetics have recently received a surge of interest as they can systematically reconcile simulation data from either a few long or many short simulations and allow us to analyze the essential metastable structures, thermodynamics, and kinetics of the molecular system under investigation. However, the estimation, validation, and analysis of such models is far from trivial and involves sophisticated and often numerically sensitive methods. In this work we present the open-source Python package PyEMMA ( http://pyemma.org ) that provides accurate and efficient algorithms for kinetic model construction. PyEMMA can read all common molecular dynamics data formats, helps in the selection of input features, provides easy access to dimension reduction algorithms such as principal component analysis (PCA) and time-lagged independent component analysis (TICA) and clustering algorithms such as k-means, and contains estimators for MSMs, hidden Markov models, and several other models. Systematic model validation and error calculation methods are provided. PyEMMA offers a wealth of analysis functions such that the user can conveniently compute molecular observables of interest. We have derived a systematic and accurate way to coarse-grain MSMs to few states and to illustrate the structures of the metastable states of the system. Plotting functions to produce a manuscript-ready presentation of the results are available. In this work, we demonstrate the features of the software and show new methodological concepts and results produced by PyEMMA.

8.
J Chem Theory Comput ; 10(10): 4221-8, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26588120

RESUMO

We propose a multiscale simulation scheme that combines first-principles Molecular Dynamics (MD) and kinetic Monte Carlo (kMC) simulations to describe ion transport processes. On the one hand, the molecular dynamics trajectory provides an accurate atomistic structure and its temporal evolution, and on the other hand, the Monte Carlo part models the long-time motion of the acidic protons. Our hybrid approach defines a coupling scheme between the MD and kMC simulations that allows the kMC topology to adapt continuously to the propagating atomistic microstructure of the system. On the example of a fuel cell membrane material, we validate our model by comparing its results with those of the pure MD simulation. We show that the hybrid scheme with an evolving topology results in a better description of proton diffusion than a conventional approach with a static kMC transfer rate matrix. Furthermore, we show that our approach can incorporate additional dynamical features such as the coupling of the rotation of a side group in the molecular building blocks. In the present implementation, we focus on ion conduction, but it is straightforward to generalize our approach to other transport phenomena such as electronic conduction or spin diffusion.

9.
J Chem Phys ; 137(19): 194110, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23181297

RESUMO

We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...